Comparison of two different O₂-delivery systems during exercise in patients with chronic hypoxia János Juhász¹ MD PhD, Júlia Juhász² medical student 1 Ilmtalklinik GmbH, Hospital Mainburg, Mainburg, Germany ## Backgrounds Results from studies using a transnasal high-flow oxygen delivery system (TNI®) suggest advantage regarding the oxygenation compared to conventional O₂-therapy (LTOT) [1-3]. We assume an identical O₂-consumption during identical exercise load. Therefore, solely the O₂-delivery system would make the differences in blood gas analysis (BGA) parameters. Aim of the study was to verify the feasibility, safety and clinical significance of TNI® in comparison to LTOT at 40% O₂-admixture each. ### Method 14 patients (pts) (7 females, 7 males, age:69,14±1,74 years, BMI:26,21±1,69 kg/m2, VC: 69,64±2,93 %, FEV1:57,36±6,99 %, Diff.capacity: 41,83±5,56 %,) with chronic respiratory failure (PaO2: 61,1±1,90 mmHg) and indication for a long-term O2-therapy. Standardized treadmill (er2000 custo-med, Germany) six-minute walk test (6MWT) [4] in a prospective, open, randomized study. First, all pts completed 6MWT on room air (basis). Then, they underwent consecutive 6MWTs applying TNI® and/or LTOT in a random order (Figure 1). Between each 6MWT pts had a resting time of 30 minutes in the sitting position. We collected data from Borg-dyspnoea-scale (BDS) scores and BGA immediately before each 6MWT and at maximum workload (Wlm) and also measured walking distance (m), workload performance (Watt), energy expenditure (kJ). Primary outcome measures were ΔPaO_2 and $\Delta PaCO_2$ from rest to WLm and their relation to walking distance (m/ ΔPaO_2), exercise performance (Watt/ ΔPaO_2) and energy expenditure (kJ/ ΔPaO_2). Statistical probes included ANOVA and two tailed student's t-test. Data are presented as mean $\pm SE$. #### Results Walking distances during basis-, TNI®- and LTOT-6MWT were 182,14±18,49 m, 235,71±21,93 m and 232,86±21,08 m respectively. BDS scores increased from rest to WLm by 5,58±0,62 (basis), 2,67±0,51 (TNI®) and 3,38±0,59 (LTOT) scores. ΔPaO_2 from rest to WLm was higher during LTOT compared to TNI® (-10,19±3,74 mmHg vs. -7,80±4,4 mmHg respectively) at identical workload performance (43,21±3,08 Watt). Workload economy, performance- and energy efficacy was better during TNI® vs. LTOT (36,14±25,76 vs. -6,82±23,42 m/mmHg; 6,29±4,35 vs. 1,13±4,03 Watt/mmHg and 2,18±1,57 vs. 0,48±1,41 kJ/mmHg respectively. Nine pts preferred TNI, 3 pts preferred conventional O₂-therapy, 2 had no preference. ## Conclusions - TNI® was a safe and comfortable way to deliver O₂ to pts with hypoxia during exercise and - was equivalent with conventional LTOT in regard of blood gas measures, walking Distance, workload performance. - TNI® was by trend superior in regard to workload economy, performance- and energy efficiency as well as ventilatory efficacy compared to LTOT. #### Reference - 1. Tiruvoipathi R, et al. High-flow nasal oxygen vs. high flow face masks: a randomised crossover trial in extubated patients. J Crit Care 2010;25:463–68. - 2. Lobato S, et al. Effectiveness of high-flow oxygen therapy with warm humidification in a COPD patient with chronic - cough. Arch Bronconeumol. 2011 Aug;47(8):420-1. Epub 2011 Jul 7. 3. Vargas F, et a. Prognostic impact of high-flow nasal cannula oxygen supply in an ICU patient with pulmonary fibrosis - complicated by acute respiratory failure. Intensive Care Med. 2011 Mar;37(3):558-9. Epub 2010 Sep 18. 4. American Thoracic Society. ATS Statement: Guidelines for the six-minute walk test. AJRCCM 2002;166:111-117.